
V4.3 - PYK Cheung, 5 Nov 2019	

	

	

EXPERIMENT VERI 
Digital Design with FPGA and Verilog 

11th November – 6th December 2019 

 

 



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	1)	

(webpage:	www.ee.ic.ac.uk/pcheung/teaching/E2_Experiment	/)		

Objectives	

By	the	end	of	this	experiment,	you	should	have	learned:	

• How	to	design	digital	circuits	using	Altera’s	Quartus	Prime	Design	software;	
• How	to	design	digital	circuits	targeting	Altera’s	Cyclone	V	FPGA	using	Terasic’s	DE1-

SoC	Board;	
• How	to	design	digital	circuits	in	efficient,	synthesizable	Verilog	HDL;	
• How	to	evaluate	your	design	in	terms	of	resource	utilization	and	clock	speed;	
• How	to	use	the	DE1-SoC	FPGA	board	with	 its	custom	daughter	board	 for	analogue	

I/O	functions;	
• Have	designed	something	yourself	for	the	Cyclone	V	FPGA.	

Before	you	start	

Before	you	come	to	the	laboratory,	you	are	expected	to:	

• Have	understood	the	lectures	on	Verilog	
• Be	familiar	with	the	basic	architecture	inside	the	FPGA	
• Have	read	through	this	Laboratory	instructions	

	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		2	

Both	the	experimental	board	and	a	PC	would	be	made	available	to	you	during	your	allotted	
period	 in	 the	 second	 year	 laboratory.	 	 In	 addition,	 you	may	 also	borrow	a	DE1-SoC	board	
from	Level	1	stores	to	use	at	home	for	one	week.		If	no	one	else	has	booked	the	board,	you	
can	renew	the	borrowing	period	on	a	week-by-week	basis.	

This	instruction	manual	is	divided	into	four	parts,	one	for	each	week.		Each	part	has	its	own	
goals	and	learning	outcomes.			

Some	students	will	 find	this	experiment	harder	or	easier	 than	average,	depending	on	your	
prior	experience	with	digital	logic.		Therefore	the	four	Lab	sessions	contain	the	compulsory	s	
well	as	optional	exercisers.	If	you	fall	behind	this	experiment	during	any	week,	 it	 is	wise	to	
find	 a	 bit	 of	 spare	 time	 to	 catch	 up	 outside	 the	 official	 laboratory	 sessions	 and	 restrict	
yourself	to	the	compulsory	parts	only.	

PART	I	–	Schematic	to	Verilog	

1.0	Introduction	

You	 should	 have	 done	 some	 background	 reading	 before	 attending	 the	
laboratory	session	as	suggested	at	the	Lecture.	

FPGAs	 is	 a	 type	 of	 programmable	 logic	 devices	 introduced	 by	 Xilinx	 in	
1985.	 	 It	 is	 now	 the	 predominant	 technology	 for	 implementing	 digital	
logic	 in	 low	to	moderate	volume	production.	 	The	basic	 structure	of	an	
FPGA	 is	 shown	 below.	 It	 consists	 of	 three	main	 types	 of	 resources:	 1)	
Logic	Blocks	 (or	Elements);	2)	Routing	Resources;	3)	 I/O	Pad.	 	For	more	
information	about	FPGA,	see	Lecture	1	notes	available	on	the	E2	Digital	
Electronics	course	webpage.	

1.1	 Quartus	Prime	Design	Suite	

Quartus	provides	a	complete	environment	for	you	to	implement	your	design	on	
an	Altera	FPGA.	 	 It	 supports	all	 aspects	of	 the	design	 flow,	which	 is	 typically	
following	the	flow	diagram	shown	here.		The	best	way	to	learn	Quartus	
is	to	go	through	this	experiment	step-by-step.		After	you	have	learned	
the	 basics,	 you	 can	 start	 to	 explore	 other	 aspects	 of	 the	 Quartus	
system.		

1.2	 DE1-SoC	Board	

DE1-SoC	Board	is	designed	and	made	by	Terasic.		It	is	based	around	a	
Cyclone	V	FPGA	from	Altera.		Include	on	the	DE1	board	are	various	I/O	
devices	 such	 as	 7-segment	 LED	 displays,	 LED,	 switches,	 VGA	 port,	
RS232	 port,	 SD	 card	 slot	 etc.	 A	 block	 diagram	 of	 the	 DE1	 board	 is	
shown	 below.	 	 Although	 the	 Cyclone	 V	 includes	 a	 dual-core	 ARM	
processor,	we	will	 only	 be	 using	 the	 FPGA	part	 of	 the	 FPGA	 for	 this	
experiment.		

1.4	 Verilog	Hardware	Description	Language	

One	of	 the	key	 learning	objective	of	 the	2nd	year	course	 in	digital	 logic	 (E2.1)	 is	 for	you	 to	
learn	the	Verilog	Hardware	Description	Language	(HDL),	which	is	commonly	used	to	specify	
FPGA	and	other	types	of	chip	designs.	An	excellent	tutorial	can	be	found	on:		

http://www.asic-world.com/verilog/veritut.html.	 A	 Verilog	 Syntax	 Summary	 sheet	 is	
provided	in	Appendix	A.	

	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		3	

	
Block	Diagram	of	the	DE1-SoC	Board	

1.5	 	Using	Quartus	Prime	software	and	DE1	at	home	

If	your	own	laptop	is	sufficiently	powerful	(at	least	4GB	of	RAM)	and	has	plenty	of	free	disk	
space	(at	least	1GB	of	free	disk	space),	you	may	want	to	install	a	copy	of	the	Quartus	design	
software	on	your	own	computer.	 	 The	 latest	 version	 is	Quartus	 version	16.	 	 You	may	also	
borrow	a	DE1-SoC	board	 from	the	EEE	Stores	with	your	 ID	card.	The	 lending	period	 is	one	
week	at	a	time.			You	may	renew	your	loan	of	the	board	if	no	one	else	is	on	the	waiting	list.	
Of	 course,	 the	 DE1-SoC	 board	 and	 the	 appropriate	 software	 are	 available	 anytime	 during	
working	hours	in	the	Level	1	Electronics	Lab.	

To	 install	 your	 own	 copy	 of	 Quartus,	 you	 should	 go	 to	 Altera’s	 website	 to	 register,	 then	
download	 the	 free	 Quartus	 Prime	 Light	 Edition	 from:	 http://dl.altera.com/?edition=web.		
Note	that	Quartus	and	the	DE1	board	only	works	with	MS	Windows	or	Linux.	 	 If	you	are	a	
Mac	user,	you	would	need	to	 run	a	virtual	machine	 (e.g.	VirtualBox,	Parallels	or	VMware),	
load	a	version	of	Windows	or	Linux,	and	then	run	Quartus	under	that	environment.	

Plug	the	DE1	board	to	a	USB	port	on	your	computer	and	turn	it	ON	(red	button).		It	will	ask	
you	for	a	device	driver,	which	can	be	found	in	the	Quartus	software	directory	….\drivers.		
See	“DE1-SoC	Getting	Started	Guide”	from	the	experiment	webpage.		



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		4	

Experiment	1:	Schematic	capture	using	Quartus		–	7-Segment	Display	

If	you	have	come	to	the	laboratory	session	prepared,	Part	I	of	experiment	VERI	should	take	
no	more	than	ONE	3-hour	session.		It	will	lead	you	through	the	entire	design	of	a	7-segment	
decoder	using	schematic	entry	method.		It	will	use	four	slide	switches	on	the	right	(SW3	to	
SW0)	on	the	DE1	board	as	input,	and	display	the	4-bit	binary	number	as	a	hexadecimal	digit	
on	the	right-most	7-segment	display	(HEX0).		

	

Step	1:		Creating	a	good	directory	structure	

Before	 you	 start	 carrying	 out	 any	 design	 for	 this	
exercise,	it	would	be	very	helpful	if	you	first	create	in	
your	 home	 directory	 a	 directory	 structure	 on	 the	
h:\	drive	for	this	experiment.	Shown	on	the	right	 is	a	
possible	 directory	 structure	 that	 you	may	 choose	 to	
create.	 	 Each	 folder	 is	 empty	 for	 now,	 but	 as	 you	
progress	 through	 the	 four	 Lab	 Sessions,	 you	 will	 be	
creating	each	design	in	each	of	the	folders.	

Step	2:		See	what	you	are	aiming	for	

Go	to	the	Experiment	webpage	(see	above)	and	download	
a	copy	of	the	solution	for	Exercise	1:	“ex1sol.sof”	to	your	
home	directory	 (or	wherever	 that	 is).	 	Now	 turn	ON	 the	
DE1	board.	

Step	3:		Programme	the	FPGA	

Start	 up	 Quartus	 software	 on	 your	 computer.	 	 Click	
command:	Tools	 >	 Programmer.	 	 In	 the	 popup	window,	
click:	Hardware	Setup	….	 	You	should	see	something	 like	
the	 diagram	 on	 the	 right.	 	 Then	 select:	DE-SOC	 [USB-1].	
This	is	to	tell	Quartus	software	that	you	are	using	the	DE1-
SoC	USB	interface	to	program	(or	blast)	the	FPGA.		Then	click	Auto	Detect	
button	on	the	left.		A	window	will	pop	up	and	you	need	to	select	SCSEMA5	
radio	button	to	tell	the	system	which	type	of	Cyclone	V	FPGA	chip	you	are	
using	(which	is	5CSEMA5).	

You	will	now	see	 two	 lines	 in	 the	Programmer	window	as	 shown	on	 the	
right.		Since	we	are	only	configuring	(i.e.	sending	a	bit-stream	to)	the	FPGA	
part	 of	 the	 Cyclone	V	 chip,	we	 need	 to	delete	 the	 SOCVHPS	 (stands	 for	
System-on-Chip	V	High	Performance	System,	which	is	the	ARM	processor)	
from	the	programmer	set	up.	

Next	 click	 the	 AddFile	 button.	 Navigate	 to	 the	 folder	 containing	 the	
ex1sol.sof	file.		Select	this.		Finally	click	the	Start	button.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		5	

The	ex1sol.sof	file	contains	the	solution	to	Exercise	1	designed	by	me.		It	has	the	bit-stream	
to	configure	(or	programme)	the	FPGA	part	of	Cyclone	V.	Once	the	bit-stream	is	successfully	
sent	to	the	FPGA	chip,	this	design	will	take	over	the	function	of	the	chip.		You	should	be	able	
to	 change	 the	 least	 significant	 four	 switches	 and	 see	 a	 hexadecimal	 number	 displayed	 on	
rightmost	7-segment	display.	

You	 should	 leave	 the	 programmer	 utility	 running	 in	 the	 background	 for	 ease	 of	 sending	
another	design	to	the	FPGA	later.		Return	to	Quartus	software	by	clicking	its	window.	

Step	4:	Paper	Design	

The	 overall	 block	 diagram	 for	 the	 decoder	 is	
shown	 below.	 	 The	 decoder	 outputs	 out[6..0]	
drive	 the	 seven	 segments	 on	 the	 display.	 Note	
that	 the	 LED	 segments	 are	 low	 active,	 meaning	
that	 the	 LED	 will	 light	 up	 (ON)	 if	 the	
corresponding	digital	signal	is	at	0V.		

The	truth-table	for	the	decoder	is	shown	here:	

With	what	you	have	learned	in	the	first	year,	you	
should	be	able	to	design	the	decoder	in	the	form	
of	seven	Boolean	equations,	and	then	use	K-map	
to	minimise	the	logic.		In	order	to	save	time,	only	
derive	 the	 Boolean	 equation	 for	 out[4]	 as	 a	
Boolean	function	of	in[3..0].			

You	also	should	not	use	K-map	to	perform	any	optimization.	 	 	Quartus	 (and	other	modern	
CAD	design	software)	will	perform	logic	minimization	for	you	and	will	do	a	much	better	job,	
taking	into	account	the	architecture	of	the	FPGA	chip.		

Step	5:	Create	the	project	“ex1”	

• Create	in	your	home	directory	the	
folder	../part_1/ex1.			

• Click	file>New	Project	Wizard,	complete	the	form.	
Use	ex1	as	the	project	name	and	ex1_top	as	top-
design	name.			

• Select	the	FPGA	device	as	Cyclone	V	5CSEMA5F31C6.		
Then	click	Finish.	

Step	6:	Specify	the	7-segment	decoder	as	schematic	

• Download	 from	 the	 website	 the	 file:	
My7Seg_incomplete.bdf.zip	 and	 unzip	 in	 the	
folder	 ../part_1/ex1.	 	 This	 is	 a	 partially	 completed	
schematic	 for	 the	 7-segment	 decoder	 circuit	 with	
circuit	for	out[4]	missing.		You	are	now	ready	to	enter	
the	 circuit	 to	 produce	 out[4]	 as	 gates	 using	 the	
schematic	 editor.	 This	 is	 shown	 on	 the	 right	 and	 it	
implements	the	equation:	

out4	=	/in3*in0	+	/in3*in2*/in1	+	/in2*/in1*in0	

The	Graphic	Editor	provides	a	number	of	libraries	which	include	circuit	elements	that	can	be	
imported	into	a	schematic.	Double-click	on	the	blank	space	in	the	Graphic	Editor	window,	or	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		6	

click	on	 the	 icon	 	in	 the	 toolbar	 that	 looks	 like	an	AND	gate.	A	pop-up	box	will	appear.	
Expand	the	hierarchy	in	the	Libraries	box	as	shown	in	the	figure.	First	expand	libraries,	then	
expand	 the	 library	primitives,	 followed	by	expanding	 the	 library	 logic	which	comprises	 the	
logic	 gates.	 Select	 “and2”,	 which	 is	 a	 two-input	 AND	 gate,	 and	 click	 OK.	 Now,	 the	 AND	
symbol	will	appear	 in	 the	Graphic	Editor	window.	Using	 the	mouse,	move	the	symbol	 to	a	
desirable	location	and	click	to	place	it	there.		

• Repeat	 and	place	 two	 “and3”	 and	one	 “or3”	 gates	on	 the	 schematic.	 	 Change	 the	
names	of	all	the	input	and	output	nodes	accordingly.		(It	is	quickest	to	put	down	all	
the	gates	first	before	wiring	them	up	later.)	

• Now	wire	up	the	gates	by	click	and	drag	on	the	input	nodes	of	the	gates	to	extend	a	
wire	out,	and	then	simply	type	the	name	of	the	node	on	the	keyboard.		

• When	completed,	you	will	see	the	entire	schematic	diagram	for	the	decoder	circuit	
as	shown	here:	

	
Step	7:	Include	this	file	in	project	

Every	time	you	create	a	new	entity	or	module	as	part	of	your	design,	you	must	include	the	
file	in	the	project.	

• Click:	Project	>	Add	Current	Files	to	Project	….,	

	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		7	

Step	7:	Make	a	symbol	for	the	decoder	

It	 is	 often	 convenient	 to	 encapsulate	 a	 circuit	 into	 a	 module	 (sometimes	 known	 as	 an	
“entity”),	which	is	then	used	multiple	times	in	a	design.		For	us	to	do	so,	we	need	to	create	a	
symbol	for	My7seg	decoder	module.	

Click	File	>	Creat/Update	>	Create	Symbol	…	

	

Step	8:	Use	this	module	at	the	top-level	design	schematic	

• Now	we	will	use	the	newly	created	entity	My7seg	in	the	top-level	design.			
• Click				File	>	New	….				and	select	Block	Diagram	/Schematic	File	as	shown	here:	

• Use	 the	 	button	 to	 select	 and	 place	 the	 My7seg	 module,	 input	 port	 and	
output	port	on	the	schematic.	

• Double	 click	 the	 port	 symbol	 	to	 edit	 the	 input	 and	 output	 pin	 names	 as	
SW[3..0]	and	HEX0[6..0]	respectively.	

• Use	the	bus	wiring	 tool	 to	wire	up	 the	ports	 to	 the	module	as	 two	busses	as	
shown	below.	

• Save	this	file.	

	

Step	9:	Pin	assignment	&	Compilation	

You	need	to	associate	your	design	with	the	physical	pins	of	the	Cyclone	V	FPGA	on	the	DE1-
SOC	board.	

• Check	 that	 the	 device	 is	 corrected	 assigned	 as	
5CSEMA5F31C6	using:	Assignments	>	Device	…	

• Click:	Processing	>	Start	>	Start	Analysis	and	Elaboration.		
This	will	work	 out	 the	 input/output	 port	 names	 for	 your	
design.	 	 This	 should	 complete	without	error.	 	Otherwise,	
fix	all	errors	and	re-analyse.	(There	will	be	many	warnings	
–	generally	warnings	are	not	 important.	But	 there	MUST	
not	be	errors,	which	will	be	shown	in	RED.)	

• Click	Assignment	>	Pin	Planner			and	a	new	window	with	
the	 chip	 package	 diagram.	 You	 should	 also	 see	 the	 top-
level	input/output	ports	shown	as	a	list.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		8	

	

• Click	on	the	appropriate	pins	one	by	one,	and	select	the	corresponding	location	from	
a	dropdown	list	according	to	the	list	shown	in	the	pin	assignment	table	above.		The	
I/O	standard	(i.e.	interface	voltages)	should	be	“3.3V	LVTTL”.		

• Click:	Processing	>	Start	Compilation,	to	build	the	entire	design,	and	to	generate	all	
the	necessary	files.		There	should	be	NO	error,	but	there	will	be	many	warnings.	

Step	10:	Program	the	FPGA	on	the	DE1	Board	

• You	have	now	created	in	the	../part_1/ex1/output_files/	folder	the	file	ex1_top.sof,	
which	contain	your	design.		(This	should	be	the	same	design	as	the	one	I	gave	you	to	
try	out	in	Step	2	of	this	exercise.)		

• Program	the	DE1	board	with	your	version	of	ex1_top.sof	and	test	that	it	is	working	
properly.	

Step	11:	Propagation	Delay	from	inputs	to	outputs	

• Click:	Tools	 >	 TimeQuest	 Timing	Analyzer	 to	 invoke	 the	built	 in	 timing	analyzer	of	
Quartus.			A	new	TimeQuest	window	will	appear.			

• Click:	Netlist	>	Create	Timing	Netlist.			Then	select	post-fit	and	slow-corner,	then	OK.	
• In	the	“Set	Operating	Conditions”	window,	select	“Slow	1100mV	0°C	model”.	
• Now	 click:	 Netlist	 >	 Update	 Timing	 Netlist	 …	 	 This	 will	 use	 the	 specified	 timing	

model	and	condition	to	produce	a	set	of	timing	data.	
• Click:	Report	>	Datasheet	>	Report	Datasheet.		This	will	produce	a	table	showing	the	

input-to-output	propagation	delay	for	various	combination	of	rise	and	fall	times	(RR,	
RF,	FR	and	FF).		Make	sure	that	you	understanding	what	this	table	means.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		9	

• Repeat	 the	 procedcure	 again	 but	 for	 “Slow	 1100mV	
85°C	Model”.	What	 is	 the	delay	difference	at	 these	
two	temperature	extremes?	Why?	

Step	12:		Examine	the	resources	used	

• Now	 examine	 the	 Compilation	 Report.	 	 You	 should	
see	something	as	shown	here.	

• It	 shows	 that	 this	 design	 used	 only	 4	 out	 of	 32,070	
ALMs	(Adaptive	Logic	Modules),	11	of	the	457	I/O	pins	
and	none	of	the	other	resources.	

	

Congratulations!	You	have	now	completed	your	first	FPGA	design!	

Experiment	2:		7-Segment	decoder	in	Verilog	HDL	

I	 hope	 you	 now	 appreciate	 how	 limiting	 and	 slow	 it	 is	 to	 enter	 a	 design	 as	 a	 schematic	
diagram.		Modern	digital	designers	DO	NOT	USE	schematic	as	a	method	of	entry	any	more.		
Instead	 a	 designer	 would	 either	 use	 Verilog	 or	 VHDL	 hardware	 description	 language,	 or	
some	 high	 level	 language	 such	 as	 OpenCL	 or	 Vivaldo	 HLS	 to	 specify	 the	 design.	 In	 this	
experiment,	 you	 will	 design	 the	 Verilog	 version	 of	 what	 you	 have	 done	 in	 Experiment	 1.		
Hopefully	this	will	convince	you	never	to	use	schematic	capture	for	digital	design	again!§	

Step	1:	hex_to_7seg.v	

• Create	 a	 new	 project	 ex2	 as	 before	 and	 a	 top-
level	module	ex2_top	as	before	in	ex2	folder.	

• In	 Quartus,	 create	 a	 design	 file	 in	 Verilog	 HDL	
known	as	hex_to_7seg.v	using:	

File	 >	 	 New	 ….	 	 and	 select	 Verilog	 HDL	
from	the	list.	

• Type	 the	 Verilog	 source	 file	 as	 shown	 below.	
(You	 should	 have	 seen	 this	 during	 one	 of	 the	
Lectures	 earlier).	 	Make	 sure	 you	 pay	 attention	
to	the	syntax	of	Verilog.		Save	your	file.	

• A	 full	 compilation	 can	 take	 a	 long	 time.	 	 A	 far	
more	 efficient	 way	 to	 check	 the	 syntax	 of	 your	
code	by	clicking:		Process	>	Analyze	current	file.		
You	 should	 get	 into	 a	habit	 of	ALWAYS	perform	
this	 step	 to	 make	 sure	 that	 the	 new	 Verilog	
module	 you	 have	 created	 is	 as	 error	 free	 as	

possible.		It	will	save	you	a	lot	of	time.	

Step	2:		Create	Top-Level	Specification	in	Verilog	

• Instead	 of	 using	 schematic	 capture	 for	 the	 top-
level	 module	 (that	 connects	 to	 physical	 pins	 on	
the	 FPGA),	 we	 will	 do	 this	 also	 in	 Verilog	 by	
creating	the	file:		“ex2_top.v”	as	shown	here.		Set	
this	as	Top-Level	entity.	

• Click:	 Project	 >	 Add/Remove	 Files,	 and	 remove	
the	.bdf	file	as	part	of	this	project.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		10	

• This	allows	you	to	remove	the	.bdf	file	and	replace	it	with	the	.v	file	for	the	top-level	
specification.	

• Verify	 that	 everything	 works	 properly	 with:	 	 Process	 >	 Start	 >	 Start	 analysis	 &	
elaboration.	Make	 sure	 that	 there	 is	 no	 error.	 	 (Warnings	 often	 capture	 potential	
errors.	 	 However,	 the	Quartus	 system	 generates	many	warnings,	 and	 nearly	 all	 of	
which	are	not	 important.	 	Once	you	have	gain	confidence	on	the	system,	you	may	
start	ignoring	the	warning,	but	never	ignore	any	error.)	
	

You	will	save	a	lot	of	time	if	you	ALWAYS	use	these	two	steps:	analyze,	and	analysis	&	
elaboration,	and	ensure	that	ALL	errors	are	dealt	with	(and	warning	understood).	

	

Step	3:	Pin	Assignment	–	the	quick	way	

• Earlier	you	used	the	pin	assignment	editor	to	associate	pins	on	the	package	to	your	
signals.		This	is	a	tedious	process.		In	ex1,	if	you	have	correctly	completed	the	design,	
the	pin	assignment	would	have	been	stored	in	a	file:		“ex1_top.qsf”	file.			

• Open	this	 file,	either	using	Quartus’	built-in	editor	by	clicking:	File	>	Open	 file…	or	
use	your	own	favourite	edit	on	your	PC.			

• You	will	find	lines	of	statement	such	as:	

	
• The	first	line	defines	the	voltage	standard	used	by	the	HEX0[4]	signal	(3.3V	logic).	
• The	second	line	defines	the	physical	pin	location	of	HEX0[4]		is	PIN_AF28.	
• Now	open	the	ex2_top.qsf	file.		You	will	see	that	there	is	no	pin	assignment	for	this	

design	yet.		Before	full	compilation,	we	need	to	tell	Quartus	which	signal	is	connect	
to	which	physical	pin	on	the	FPGA.	

• Instead	 of	 using	 the	 tedious	 pin	 assignment	 editor	 in	 ex1,	 we	 will	 modify	 the	
ex2_top.qsf	file	with	our	text	editor	to	include	the	pin	assignment	information.		To	
do	this,	first	download	from	the	experiment	webpage	the	file:	pin_assignment.txt	to	
the	VERI	directory.	

• Then	use:	Edit	>	Insert	File	…		in	Quartus	to	insert	the	whole	of	pin_assignment.txt	
in	ex2_top.qsf.	

• Note	that	we	only	use	7	pins	 in	ex2_top.v,	but	pin_assignment.txt	defines	all	pins	
used	by	the	four	parts	of	Experiment	VERI.	 	Quartus	will	generate	 lots	of	warnings	
which	you	may	ignore	about	these	unused	pins	not	being	driven.		 It	will	not	create	
any	error	and	the	pin	assignments	for	unused	pins	will	be	ignored.	

Step	5:	Test	your	design	

• Recompile	your	design.	
• Go	 to	 the	 Programmer	 window	 (assuming	 that	 you	 still	 have	 it	 opened).	 	 Delete	

the	.sof	file	entry	and	add	the	current	.sof	file.				
• Test	your	design	on	the	board.	

Step	6:	Put	module	in	mylib	

Over	the	four	weeks	in	the	Lab,	you	will	design	and	verify	various	Verilog	modules	which	
you	will	 reuse.	 	You	should	copy	 these	 to	 the	“mylib”	 folder	and	 include	them	 in	your	
new	design	as	necessary.	

Note:		When	you	perform	a	compilation,	there	may	be	a	popup	window	informing	you	that	
some	“Chain_x.cdf”	file	has	been	modified,	and	ask	if	you	wish	to	save	it.	Just	click	NO.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.3	-	PYK	Cheung,	7	Nov	2017	 	 Part	1	-		11	

Experiment	 3:	 Test	 yourself	 -	 10-bit	 binary	 switch	 values	 on	 three	 7-segment	
displays	

Here	 is	 a	 “test	 yourself”	 exercise.	 	 Create	 your	 own	 design	 to	 display	 all	 10-bit	 sliding	
switches	as	hexadecimal	on	three	of	the	7-segment	LED	displays.					

Checkpoint:		You	should	get	to	this	point	by	the	end	of	the	3-hour	Lab	Session	or	earlier.	

	

Experiment	4	 (optional):	Displaying	10-bit	binary	as	BCD	digits	on	 the	7-segment	
displays	

In	one	of	the	lectures,	you	have	been	taught	how	to	convert	binary	numbers	to	binary-code-
decimal	 digits	 using	 the	 “shift	 and	 add	 3”	 algorithm.	 	 You	 have	 been	 shown	 how	 to	
implement	an	8-bit	binary	to	BCD	converter	using	Verilog.		Furthermore	in	problem	sheet	1,	
you	have	been	asked	to	extend	this	to	a	10-bit	converter	(bin2bcd_10.v).	

For	this	optional	exercise,	you	are	required	to	display	the	10-bit	binary	number	as	specified	
by	the	10	sliding	switches	SW[9:0]	as	a	decimal	number	using	your	10-bit	converter	module	
and	the	7-segment	decoder.		Record	the	resource	usage	of	your	design.	

• Now	 download	 from	 the	 experiment	 website	 a	 16-bit	 binary	 to	 BCD	 converter	
module	provided	(bin2bcd_16.v),	and	replace	your	10-bit	converter	with	this	one.			

• When	instantiating	the	16-bit	converter,	but	only	using	10	of	the	16	bits,	you	should	
specify	the	input	ports	as:		{6’b0,	SW[9:0]}.		(Remember	that	the	{…}	operator	is	for	
bit-concatenation.)	

• Test	your	design	on	the	DE1	Board.			
• Compare	the	resource	usage	by	this	design	(with	bin2bcd_16.v)	with	that	using	the	

10-bit	version	 (bin2bcd_10.v).	 	You	will	 find	 that	 in	 fact	 the	number	of	ALMs	used	
will	be	the	same.			

• Basically	Quartus	optimizer	 removes	unused	 resources.	 	The	module	bin2bcd_16.v	
has	 six	of	 its	 input	 connected	 to	0,	 and	only	12	of	 its	output	 connected	 to	output	
pins.		The	CAD	software	will	eliminate	all	the	redundant	logic.		This	should	result	in	
the	same	number	of	ALM	being	used	as	that	with	a	10-bit	converter.		In	other	words,	
for	 such	 combinational	 circuit,	 you	 only	 need	 to	 keep	 the	 16-bit	 version	 for	 any	
numbers	with	16	bits	or	lower.	

	

	

Before	you	move	onto	Part	II	of	VERI,	you	should	copy	the	components	
(modules)	 you	 have	 designed	 to	 the	 “mylib”	 folder.	 	 In	 the	 following	
sessions,	 you	will	 be	using	 the	 various	 .v	 files	 from	 this	 repository	 of	
your	own	design.		You	will	also	be	adding	to	it	later.	

	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	1	

Department	of	Electrical	&	Electronic	Engineering	
Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	2)	
(webpage:	www.ee.ic.ac.uk/pcheung/teaching/E2_Experiment	/)		

PART	2	–	Counters	and	FSMs	

1.0		Learning	Outcomes	

Part	2	of	VERI	teaches	you:	

• how	to	design	different	types	of	counters	and	timers;	
• how	to	use	the	Modelsim	simulator	to	verify	the	correct	function	of	your	design	and	

the	use	of	testbenches;	
• how	 to	 predict	 the	maximum	 operating	 clock	 frequency	 of	 your	 circuit	 sequential	

circuits;	
• how	 to	 design	 some	 useful	 timing	 and	 counting	 components	 for	 later	 part	 of	

Experiment	VERI.	

1.1	 Experiment	5:	Designing	a	Counter	

Step	1:	Create	the	project	for	an	8-bit	counter	

• Create	in	your	directory	a	folder	named	part_2.			
• Click	 file>New	 Project	Wizard,	 and	 create	 project	ex5	 and	 top	 level	 file	ex5_top.		

Then	click	Finish.		
• Create	 the	 Verilog	 file:	 “counter_8.v”	 which	 contains	 your	 design	 in	 Verilog.	 	 I	

suggest	you	use	convention	of	using	“_n”	to	indicate	the	number	of	bits	in	a	module.	
• Click	File	>	New	…		and	select	Verilog	as	the	new	file.		An	edit	window	will	appear.	

Step	2:	Enter	the	Verilog	specification	of	the	8-bit	binary	counter	

• Enter	the	Verilog	module	as	shown	below	(next	page).	 	Although	you	can	miss	out	
the	 comments,	 I	 recommend	 that	 you	 to	 retain	 them	 because	 the	 code	 is	
deliberately	verbose	in	order	to	explain	the	meaning	of	the	Verilog	language.			

• The	 line	 `timescale	1ns	 /	 100ps	 tells	 the	 system	to	use	1	ns	as	 the	unit	 time	step	
with	a	time	resolution	of	100ps.	

• Make	sure	that	you	fully	understand	this	Verilog	code	before	proceeding	to	the	next	
step.		Save	the	file	as	counter_8.v.		(I	recommend	that	you	use	module	name	as	the	
file	name	to	avoid	confusion.)	

Step	3:	Enter	the	Verilog	specification	of	the	8-bit	binary	counter	

• While	is	opened	in	the	Editor	window,	click	 	Project	>	Add	Current	File	to	Project,	
then	click	Project	>	Set	as	Top	Level	Entity.	 	This	command	tells	Quartus	that	this	
module	is	the	top-level	of	your	design.			

Normally	 we	 use	 …_top.v	 as	 the	 top-level	 module,	 which	 connects	 to	
physical	 pins	 of	 the	 FPGA.	 	 However,	 for	 this	 experiment,	 the	 counter	
module	 is	 verified	 through	 simulation.	 	 So	 we	 don’t	 need	 to	 create	 pin	
connects.		The	“Set	as	Top	Level	Entity”	is	very	useful	if	you	want	to	use	the	
simulator	to	verify	different	modules	in	a	large	design.	You	can	move	up	and	
down	the	module	hierarchy	and	verify	them	from	the	lowest	level	up.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	2	

• Click	Processing	>	Analyze	Current	File.		This	is	the	fastest	way	to	check	if	this	.v	file	
has	any	syntax	error.	

• Then	Click	Processing	>	Start	>	Start	Analysis	and	Synthesis.	This	takes	the	current	
Verilog	module	 (and	all	other	modules	that	 it	uses	 if	any),	and	produce	a	register-
level	model	of	your	design	ready	for	register-transfer	level	(RTL)	simulation.		Unlike	
full	compilation,	this	step	does	not	require	pin	assignment	and	other	device	specific	
steps,	but	is	sufficient	for	you	to	simulate	the	circuit	as	specified	in	Verilog.		

Verilog	code:	8-bit	counter		
(Note	that	the	first	character	on	line	1	before	

‘timescale’	is	a	backquote	`	-	not	easy	to	find	on	many	
keyboards!)	

	

Step	4:	Simulate	the	binary	counter	

• Click	 Tools	 >	 Run	 Simulation	 Tools	 >	
RTL	 Simulation.	 	 This	 command	 starts	
up	Modelsim	simulator	programme	as	a	
separate	 process.	 	 Now	 you	 have	
entered	the	Modelsim	environment.			

• Click	 	 Simulate	 >	 Start	 Simulation	 ….			
Then	select	work	->	counter_8	from	the	
popup	window.	 	 This	 tells	Modelsim	 to	
simulate	this	module.	

• Note	 that	 Modelsim	 provides	 several	 windowpanes.	 The	 most	 important	 is	 the	
Transcript	pane	–	 this	 is	where	you	enter	 commands1	to	drive	 the	 simulator.	 	 The	
wave	pane	is	where	results	are	displayed	as	waveforms.		You	are	recommended	to	
un-dock	this	pane	as	shown	below	so	that	it	is	in	a	separate	window	and	spans	the	
whole	width	of	your	monitor.			Finally,	there	is	the	object	pane,	which	shows	all	the	
signals	(objects)	of	your	design.	

	

																																																								
1	Modelsim	uses	a	scripting	language	known	as	Tcl	to	control	how	it	is	driven.		You	only	need	to	learn	
Tcl	if	you	want	to	do	advance	stuff	with	Modelsim	for	your	personal	interest.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	3	

Step	 5:	 Add	 waveforms	 to	 the	 Wave	 window	 and	 drive	
signals	

• In	the	transcript	window,	enter	two	commands:	“add	
wave	 clock	 enable”	 and	 “add	 wave	 –hexadecimal	
count”.	 	 This	will	 add	 these	 signals	 as	waveforms	 in	
the	 wave	 pane	 and	 show	 count	 values	 as	
hexadecimal.	

• Now	we	want	to	drive	clock	with	a	50MHz	symmetrical	signal.		To	do	this,	enter:	
• Enter:	“force	enable	1”	to	enable	the	counter.	
• Enter:	“run	100ns”	to	run	the	simulator	for	5	clock	cycles	(5	x	20ns	=	100ns).	
• You	will	 see	 the	waveform	pane	 showing	 the	 counter	 counting	 from	0	 to	 5.	Now	

force	enable	low	and	run	for	another	100ns.	Then	high	again	and	run	for	100ns.			

	

• Click	on	the	waveform	put	a	cursor	at	a	specific	time	for	inspecting	the	signal	values.		
The	 icons	 above	 the	waveforms	 (as	 labeled)	 allow	 you	 to	 zoom	 in	 and	out	 of	 the	
waveform.		Try	this	yourself.		

	 	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	4	

Step	6:	Create	a	Testbench	as	a	DO-file	

• Interactively	 specifying	 the	 driving	
signals	 is	 very	 tedious	 and	 prone	 to	
error.	 	 Therefore	 the	preferred	method	
is	to	create	a	“do”	file	which	is	a	text	file	
containing	a	sequence	of	commands	(as	
you	 have	 previously	 entered	 in	 the	
transcript	window).		

• Click	 	 File	 >	 new	 >	 source	 	 and	 select	
new	“do”	file.		Then	enter	the	command	
lines	as	shown	on	the	right.	 	 	Then	save	
this	as	“tb_counter.do”.			

• Delete	all	signals	from	the	wave	window,	and	enter	command	
vsim>	restart	
vsim	>	do	./tb_counter.do	
	

• This	 should	 provide	 exactly	 the	 same	 waveform	 results	 as	 in	 step	 5.	 	 However,	
the	 .do	 file	 can	 be	 reused	 and	 modified	 far	 easier	 than	 typing	 them	 into	 the	
transcript	window.		It	acts	as	a	simple	form	of	a	test-harness	(or	testbench)	for	your	
design.	 	 Generally	 speaking,	 you	 must	 produce	 testbenches	 for	 all	 your	 designs	
instead	of	using	interactive	means	to	test	your	circuit.		Not	only	because	this	saves	
time,	 it	 also	allows	you	 to	 change	 the	 code	and	verify	 its	 correctness	 in	 the	 same	
way	for	each	version	of	your	design.	

Step	7:	Single	stepping	

• Modelsim	is	very	powerful.	You	can	use	it	to	debug	your	Verilog	design	almost	like	
software.		However,	do	remember	that	we	are	dealing	with	a	hardware	description	
that	operates	in	parallel.	 	 In	contrast,	software	codes	are	generally	procedural	and	
operate	sequentially.		

• Try	the	vsim>	step	command	or	click	on	the	step-command	pane	 	
to	watch	how	you	can	step	through	your	Verilog	code.	 	Signal	values	 in	the	object		
and	the	wave	windows	are	updated	accordingly.	

• Modelsim	has	many	useful	features	to	help	you	debug	your	design.		Details	of	all	the	
commands	can	be	found	in	the	Modelsim	Reference	Manual.	This	is	easily	available	
under		Help	>	PDF	Documentations	>	Reference	Manual.	Beware	that	this	manual	
is	very	thick!	DO	NOT	print	this	out.	

2.0			Experiment	6:	Implementing	a	16-bit	counter	on	DE1	

In	this	part	of	the	experiment,	you	will	test	your	counter	design	on	the	DE1	board.		You	will	
also	learn	how	to	find	the	maximum	clock	frequency	that	your	design	will	work	correctly.	

Step	1:	 	Create	a	new	project	ex6,	and	copy	to	this	directly	your	files	counter_8.v.	Modify	
counter_8.v	to	counter_16.v	and	make	it	a	16-bit	counter.	Furthermore,	add	a	reset	input	
to	reset	the	count	value	to	zero	synchronously	to	the	clock.		Download	from	the	experiment	
webpage	the	component	bin2bcd_16.v,	a	module	I	have	designed	to	convert	a	16-bit	binary	
number	 to	 5	 BCD	digits.	 You	will	 also	 need	 the	 add3_ge5.v	module.	 Put	 these	module	 in	
the		../mylib	folder,	which	should	also	contained	the	hex_to_7seg.v	you	designed	in	Part	1.	

Step	2:		Create	a	top-level	module	ex6_top.v	 in	Verilog	to	specify	the	circuit	shown	below.		
Make	sure	that	you	have	added	all	the	relevant	Verilog	modules	to	the	project	using	Project	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	5	

>	 Add/Remove	 Files	 in	 Project:	 counter_16.v,	 ex6_top.v	 and	 finally	 add	 hex_to_7seg.v,	
add3_ge5.v	 and	 bin2bcd_16.v	 from	 your	 library	 folder	 ../mylib/.	 Go	 to	 the	 ex6_top.v	
window	and	set	this	file	as	your	top-level	module.	

	

Step	3:		Use		Processing	>	Analyze	Current	File	check	your	newly	create	Verilog	files.	This	is	
the	quickest	way	to	 find	 the	basic	syntax	errors	 in	your	Verilog	code.	 	Once	all	 the	simple	
errors	are	fixed,	use	Processing	>	Start	Analysis	and	Elaboration	to	perform	fuller	check	of	
the	 “ex6_top.v”	 to	make	 sure	 that	 files	 are	 consistent	 and	 correct.	 	 There	 is	 no	 need	 to	
simulate	this	circuit.	

Step	4:	 	Selecting	 the	FPGA	Device	–	Click	Assignments	>	Device….	and	select	the	correct	
Cyclone	V	FPGA:	5CSEMA5F31C6.	

Step	5:	Pin	Assignment	–	Open	the	ex6_top.qsf	file.		Examine	its	content.		You	will	find	that	
no	pins	are	being	assigned	yet.		Insert	into	this	file	all	the	pin	assignments.		The	easiest	way	
to	do	this	is	click	on:	Edit	>	Insert	file	..		then	select	../pin_assignment.txt	(you	should	have	
downloaded	this	file	from	the	Experiment	webpage).		Note	that	you	are	currently	not	using	
all	 the	pins	assigned	 in	 the	pin_assignment.txt	 file.	 	Don’t	worry.	This	will	only	produce	a	
few	more	warning	messages.		Full	compilation	can	still	go	ahead	without	errors.		

Step	6:	 	 Set	 clock	 frequency	–	Create	a	new	file	“ex6_top.sdc”2	which	should	contain	one	
single	line:	

create_clock	-name	"CLOCK_50"	-period	20.000ns	[get_ports	{CLOCK_50}]	

With	this,	Quartus	will	know	that	the	signal	CLOCK_50	is	a	50	
MHz	clock.	

Step	 7:	 Full	 Compilation	 –	 Click:	 	 Processing	 >	 Start	
Compilation.	 	 This	 will	 go	 through	 the	 entire	 compilation	
process.		Examine	the	Tasks	window	on	the	left	and	see	all	the	
steps	being	taken	in	order	to	generate	the	final	bit-stream.	

Step	 8:	 Maximum	 clock	 frequency	 –	 As	 part	 of	 the	
compilation	 process,	 TimeQuest	 timing	 analyzer	 is	 used	 to	
predict	 various	 timing	 information.	 	 In	 the	 “Compilation	
Report”	 window,	 you	 should	 see	 a	 list	 of	 reports	 resulting	
from	 the	 compilation.	 Double-click	 TimeQuest	 Timing	
Analyzer	 entry,	 and	 you	 should	 see	 a	 list	 similar	 to	 the	 one	

																																																								
2	Synopsis	Delay	Constraint	(.sdc)	files	are	standard	formatted	files	introduced	by	Synopsis,	a	well-
known	company	specializing	on	IC	design	CAD	tools.	With	this,	a	designer	can	specify	various	timing	
constraints	for	the	CAD	tools	the	check	against.		Here	we	are	only	using	this	to	define	clock	frequency.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	6	

shown	 here.	 	 Clicking	 on	 various	 entries	 under	 this	 will	 show	 the	 various	 timing	
specifications.		Answer	the	following	questions:	

What	are	the	predicted	maximum	frequencies	for	this	circuit	under	the	highest	and	lowest	
temperatures?		What	are	the	other	interesting	timing	data	that	you	can	discover	with	these	
reports?		Why	is	the	TimeQuest	entry	red,	indicating	that	there	may	be	a	problem?			

Step	9:	 Test	your	design	on	DE1	–	program	the	DE1	and	check	that	your	design	works.			

Step	10:		Examine	the	amount	of	FPGA	resources	being	used	by	this	16-bit	counter.	Explain	
the	results.	

Test-yourself	Task	(compulsory)	–	Cascade	counter	

You	 are	 now	 required	 to	 create	 something	 yourself.	 	 In	 the	 previous	 exercise,	 the	 16-bit	
counter	is	counting	a	20MHz	clock.	This	is	much	too	fast	for	us	to	see	the	counter	changing.		
This	 part	 of	 the	 experiment	 requires	 you	 use	 the	 counter	 to	 count	 the	 number	 of	
millisecond	 elapsed.	 	 You	 would	 need	 to	 do	 this	 by	 having	 two	 counters	 cascaded	 (i.e.	
connected	in	series)	with	each	other.		The	overall	block	diagram	is	shown	below.	

The	 divide-by-50000	 circuit	 generates	 a	 1	 cycle	 high	 pulse	 every	 50,000	 clock	 cycles.		
Therefore	the	output	signal	tick	provides	one	enable	pulse	every	millisecond.		(See	notes.)	

	

Modify	your	circuit	to	implement	this	and	test	the	new	circuit	on	the	DE1	board.	

3.0			Experiment	7:	Linear	Feedback	Shift	Register	(LFSR)	and	PRBS	

You	 encountered	 a	 4-bit	 LFSR	 in	 Lecture	 5	 slide	 17,	 which	 implements	 the	 primitive	
polynomial:	 	1	+	X3	+	X4.	 	 	 	You	are	now	required	to	 implement	a	7-bit	LFSR	implementing	
the	polynomial:		1	+	X	+	X7.				Assuming	that	you	initialize	the	shift	register	to	7’d1,	work	out	
manually	the	first	10	sequence	values	of	the	output	sequence.	(The	output	sequence	should	
be	127	long	without	repetition,	is	known	as	a	pseudo-random	binary	sequence	or	PRBS.)		

Connect	the	shift	register	clock	to	KEY[3]	and	use	the	momentary	key	to	cycle	through	the	
first	 ten	 values	of	 the	PRBS.	 The	 random	output	 should	be	displayed	 as	 two	hexadecimal	
digits.	

Checkpoint:		You	should	get	to	this	point	by	the	end	of	the	second	week.	

	

	 	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	7	

4.0		Experiment	8	(Optional	challenge):	Starting	line	delay	circuit	

The	next	two	experiments	are	optional.	They	are	designed	to	provide	a	challenge	to	those	
who	finish	early,	or	for	those	who	want	to	learn	more	about	digital	design,	Verilog	and	
FPGAs.	The	two	experiments	are	linked	–	what	you	designed	in	Experiment	8	will	be	used	in	
Experiment	9.	

The	goal	here	is	to	design	a	Formula	1	style	of	race	starting	lights.		The	specification	of	your	
circuit	is:	

1. The	circuit	is	triggered	(or	started)	by	pressing	KEY[3]	(don’t	forget	KEY[3]	is	low	
active);	

2. The	10	LEDs	(below	the	7-segment	displays)	will	then	start	lighting	up	from	left	to	
right	at	0.5	second	interval,	until	all	LEDs	are	ON;	

3. The	circuit	then	waits	for	a	random	period	of	time	between	0.25	and	16	seconds	
before	all	LEDs	turn	OFF;	

4. You	should	also	display	the	random	delay	period	in	milliseconds	on	five	7-segment	
displays.	

	
In	order	to	assist	you	in	designing	this	circuit	without	spending	too	much	time,	the	following	
overall	block	diagram	of	the	circuit	is	provided.		You	should	also	download	the	solution	bit-
stream	for	this	experiment	from	the	experiment	webpage	(ex8sol.sof)	and	try	it	out	before	
attempt	it	yourself.	

	
In	the	above	diagram,	all	signals	on	the	left	of	the	block	are	inputs	and	the	signals	on	the	
right	are	outputs.			

The	two	clock	divider	circuits	provide	clock	ticks	once	every	1ms	and	0.5sec	respectively.		
Each	clock	tick	should	be	a	positive	pulse	lasting	one	period	of	CLOCK_50	(i.e.	20ns).		The	
system	then	use	the	tick_ms	signal	as	the	clock	of	the	remaining	circuit.		

The	LFSR	module	produces	a	pseudo-random	binary	sequence	(PRBS),	which	is	used	to	
determine	the	random	delay	required.		The	enable	signal	to	the	LFSR	allows	this	to	cycle	
through	a	number	of	clock	cycles	before	it	is	stopped	at	a	random	value.	

The	delay	module	is	triggered	after	all	10	LEDs	are	lid,	and	then	provides	a	delay	of	N	clock	
cycles	(at	1ms	period)	before	asserting	the	time_out	signal	(for	1ms).		

The	delay	value	N	is	fed	to	the	binary	to	BCD	converter,	which	then	drives	the	7-segment	
displays.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	8	

There	are	several	design	decisions	to	be	made:	

1. How	many	bits	LFSR	is	required?	
2. How	many	bits	should	you	use	in	the	delay	module?	

The	FSM	module	is	the	key	module	to	the	entire	system.			You	must	decide	what	are	the	
states	that	are	required,	draw	the	state	diagram	and	then	map	that	to	Verilog.	

5.0		Experiment	9	(Optional	challenge):	A	Reaction	Meter	

Extend	your	circuit	in	Experiment	8	by	adding	a	reaction	counter.	This	should	count	the	time	
between	all	the	LEDs	turning	OFF	and	you	pressing	KEY[0].			The	reaction	time,	instead	of	
the	random	delay,	should	be	displayed	on	the	7-segment	displays	in	milliseconds.	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	3)		

PART	3	–	Analogue	I/O	and	SPI	serial	Interface	

1.0	 The	Add-on	Card	

This	part	of	the	experiment	introduces	you	to	the	add-on	card	to	the	DE1	board.		The	add-on	
card	 consists	 of	 a	 10-bit	 ADC	 and	 a	 10-bit	 DAC,	 a	 quad	 op-amp,	 sockets	 for	 earphone	
(analogue	 output)	 and	 sound	 source	 (analogue	 input),	 and	 a	 potentiometer.	 The	 overall	
block	diagram	of	the	add-on	card	 is	shown	below.	 It	should	be	plugged	 into	the	expansion	
socket	 furthest	away	 from	the	edge	of	 the	DE1	board.	 	Beware	of	 the	alignment	between	
the	plug	and	the	socket.		If	the	add-on	board	is	inserted	correctly,	the	green	LED	will	light	up	
when	the	DE1	board	is	turned	ON.	

You	do	not	need	to	understand	all	 the	circuitry	on	this	board	 in	details.	 	Nevertheless,	 the	
schematic	diagram	and	a	detail	explanation	on	how	this	board	works,	together	with	all	the	
datasheets	of	the	components	used,	are	provided	on	the	Experiment	webpage.	

For	this	part	of	the	experiment,	you	would	need	to	bring	your	personal	earphone,	and	from	
the	Lab,	get	a	3.5mm	lead	and	a	digital	voltmeter.			

By	the	end	of	this	part	of	the	experiment,	you	will	have:	

• Understood	and	verified	the	operation	of	the	Serial-to-Parallel	Interface	(SPI)	of	the	
digital-to-analogue	converter	(DAC)	MCP4911	using	Modelsim;	

• Tested	the	DAC	and	measured	its	output	voltage	range;	
• Learned	 how	 to	 use	 a	 ROM	 (read-only	 memory)	 and	 a	 constant	 coefficient	

multiplier;		
• Use	the	analogue-to-digital	converter	(ADC)	MCP3002	to	convert	dc	voltages;	
• (Finally),	 designed	 a	 sinewave	 tone	 generator	 with	 variable	 frequency	 which	 is	

controlled	 with	 the	 slide	 switches,	 and	 the	 frequency	 value	 showed	 on	 the	
7-segment	displays	in	decimal	format.	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 2	

	2.0	 Experiment	10:	Interface	with	the	MCP4911	Digital-to-Analogue	Converter	

Step	 1:	 	 Understanding	 Datasheet	 -	 Go	 to	 the	 Experiment	 website	 and	 download	 the	
datasheet	 for	 the	 MCP4911	 DAC	 and	 the	 file	 spi2dac.v,	 which	 is	 a	 Verilog	 module	 that	
implements	 the	 SPI	 interface	 circuit	 to	 communicate	 with	 the	 DAC.	 	Make	 sure	 that	 you	
understand	from	reading	the	datasheet:	

• the	purpose	of	each	pin	on	the	DAC	(Section	3.0,	page	17	of	datasheet);	
• how	information	is	sent	to	the	DAC	through	the	serial	data	 input	(SDI)	pin	(Section	

5.0,	page	23-24);	
• how	to	configure	the	DAC’s	internal	function	(page	25);	
• DAC’s	timing	specifications	and	timing	diagram	(pages	4	and	7).	

There	is	no	need	for	you	to	know	how	exactly	the	DAC	works	internally.		However,	you	need	
to	 have	 sufficient	 appreciation	 of	 the	 serial	 interface	 in	 order	 to	 conduct	 this	 part	 of	 the	
experiment.	 	 Furthermore,	 don’t	 worry	 if	 you	 don’t	 fully	 understand	 the	 Verilog	 code	 in	
spi2dac.v.		This	will	be	explained	in	a	Lecture.		

Step	2:	 	Timing	diagram	–	The	spi2dac	module	takes	a	10-bit	
number	 in	 parallel	 (controlled	 through	 the	 load	 signal	which	
must	be	high	 for	 at	 least	 20ns)	 and	 generates	 the	necessary	
serial	 signals	 to	 drive	 the	 MCP4911	 DAC.	 	 Based	 on	 the	
information	 from	 the	 Datasheet,	 draw	 in	 your	 logbook	 the	
expected	 timing	 diagram	of	 the	 SPI	 interface	 signals	when	 a	
word	10’h23b	is	sent	to	the	DAC.	

Step	3:		Verify	timing	of	spi2dac.v	using	Modelsim	–	The	steps	are:	

1. Create	a	project	ex10	and	a	top-level	module	ex10_top.v	
2. Copy	to	the	directory	ex10	the	file	spi2dac.v	downloaded	from	the	webpage	
3. Make	this	file	top-level	module	(for	now)	
4. Click:	…		>	Process	>	Start	>	Analyze	and	Synthesise	
5. Start	Modelsim	(Tools	>	Run	Simulation	Tools	>	RTL	Simulation)	
6. Design	a	do-file	as	a	testbench	to	exercise	the	input	signals	correctly	
7. Run	the	do-file	and	match	the	waveform	generated	with	your	prediction	

	

Step	4:		Testing	the	DAC	on	DE1	

In	order	 to	 test	 the	spi2dac.v	module	and	verify	 that	DAC	works	properly,	 create	 the	 top-	
level	design	ex10_top.v	that	implements	the	circuit	shown	in	the	following	diagram.		

	

	The	data_in	value	determined	by	the	10	switches	(SW[9:0])	is	loaded	to	the	spi2dac	module	
at	a	rate	of	10k	samples	per	second	as	governed	by	the	load	signal.			The	steps	for	this	part	
are:	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 3	

1. Download	from	the	experiment	website	the	file	spi2dac.v.	
2. Check	that	the	clktick_16.v	module	that	you	used	last	week	is	in	the	“mylib”	folder.	
3. Create	a	top-level	module	ex10_top.v	to	connect	all	modules	together	as	shown	in	

the	diagram.	
4. Click:	Project	>	Add/Remove	Files	in	Project	…,	and	select	all	the	relevant	files	used	

here.	 	 This	 step	 is	 important	–	 it	 allows	you	 to	 select	which	modules	 to	 include	 in	
your	design.	

5. When	ex1__top.v	is	the	current	file,	click:	Project	>	Set	as	Top-Level	Entity.		This	is	
another	useful	step,	which	defines	the	top	module,	and	all	those	module	below	this	
one,	 for	 compilation.	 	With	 steps	 4	 and	 5,	 you	 can	move	 up	 or	 down	 the	 design	
hierarchy	in	a	project	for	compilation.	

6. Edit	the	ex10_top.qsf	file	to	include	pin_assignment.txt.	
7. 	Compile	and	correct	errors	as	necessary.	

Once	the	design	 is	compiled	without	error,	download	the	bit-stream	file	to	the	DE1	board.		
Using	the	DVM	feature	of	the	scope,	measure	the	DAC	output	voltage	at	TP8	for	SW[9:0]	=	0	
and	10’h3ff.	(The	voltage	range	of	the	DAC	output	should	be	from	0V	to	3.3V.)	

Step	5:		Verify	the	signals	on	an	oscilloscope	

Confirm	that	the	signals	produced	by	the	FPGA	with	the	spi2dac.v	module	agree	with	those	
from	Modelsim.	 Set	 SW[9:0]	 to	 10’h23b	 and	measure	DAC_SCK	 (TP3)	 and	DAC_SDI	 	 (TP1)	
using	an	oscilloscope.		You	may	need	to	trigger	the	scope	externally	with	the	DAC_CS	signal	
(TP2).	Compare	the	waveforms	to	those	predicted	by	Modelsim.	

	

3.0	 Experiment	11:		D-to-A	conversion	using	pulse-width	modulation	

Instead	 of	 using	 a	 DAC	 chip	 (and	 SPI	 serial	 interface	 to	 communicate	 with	 the	 chip),	 an	
alternative	method	 to	produce	an	 analogue	output	 from	a	digital	 number	 is	 to	use	pulse-
width	modulation	(PWM).		The	Verilog	code	for	a	pwm.v	module	is	given	to	you	in	Lecture	9	
slide	15.			

Create	a	design	ex11_top.v	according	to	the	circuit	shown	below.		Use	the	scope	to	examine	
the	signals	at	TP5	and	TP8.		Compare	the	output	voltage	ranges	at	TP8	and	TP9.	

	
	

	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 4	

4.0	 Experiment	12:		Designing	and	testing	a	sinewave	table	in	ROM	

This	part	of	the	experiment	leads	you	through	the	design	of	a	1K	x	10	bit	ROM,	which	stores	
a	table	of	sine	values	suitable	to	drive	our	DAC.		The	relationship	between	the	content	of	the	
ROM	D[9:0]	and	its	address	A[9:0]	is:	

D[9:0]	=		int(511*sin(A[9:0]*2*pi/1024)+512)	 	 for	1023	≥	A[9:0]	≥	0	

Since	 the	DAC	 accepts	 an	 input	 range	 of	 0	 to	 1023,	we	must	 add	 an	 offset	 of	 512	 in	 this	
equation.	(This	number	representation	is	know	as	off-set	binary	code.)	

Before	 generating	 the	 ROM	 in	 Quartus	 using	 the	 “Memory	
Compiler”	 tool,	we	 need	 to	 first	 create	 a	 text	 file	 specifying	
the	contents	of	the	ROM.		This	can	be	done	in	different	ways.		
Included	on	 the	Experiment	webpage	are:	1)	 a	Python	 script	

to	do	this;	2)	a	Matlab	script	to	do	the	same	thing;	3)	a	memory	initialization	file	
rom_data.mif	 created	 by	 either	 method.	 	 	 Download	 these	 files	 and	 examine	
them.	

Click	Tools	>	IP	Catalog	to	bring	up	a	tool	which	helps	to	create	a	1-Port	ROM.		A	
catalog	window	will	pop	up.		Select	from	the	window	>Library	>Basic	Functions	>	
Onchip	Memory	>	ROM	1-Port.	Complete	the	on-screen	form	to	create	ROM.v.	

To	verify	the	ROM,	create	the	design	ex12_top.v,	that	uses	the	switches	SW[9:0]	to	specify	
the	 address	 to	 the	 ROM,	 and	 display	 the	 contents	 stored	 at	 the	 specified	 location	 on	 the	
four	7-segment	display.			Once	this	is	done	and	loaded	onto	the	DE1,	verify	that	the	contents	
stored	in	the	ROM	matches	those	specified	in	the	rom_data.mif	file.	

5.0	 Experiment	13:		A	fixed	frequency	sinewave	generator	

Let	 us	 now	 replace	 the	 slide	 switches	with	 a	 10-bit	 binary	 counter	 and	 connect	 the	 ROM	
data	 output	 to	 spi2dac	 and	pwm	modules	 as	 shown	 in	 the	 figure	 below.	 	 Since	 the	 ROM	
contains	one	cycle	of	sinewave	and	the	address	 to	 the	ROM	is	 incremented	every	cycle	of	
the	10kHz	clock,	a	perfect	sinewave	is	produced	at	the	left	and	right	outputs	of	the	3.5mm	
jack	socket.	

	

Implement	this	circuit	and	verify	that	the	signals	produced	by	both	the	DAC	and	the	PWM	
are	as	expected.		What	is	the	frequency	of	the	sinewave?	 	

	



Department	of	EEE	
Imperial	College	London	

v4.3	-	PYK	Cheung,	27	Nov	2017	 	 Part	3	-		 5	

6.0	 Experiment	14	(optional	challenge):		A	variable	sinewave	generator	

Combine	 everything	 together	 to	 produce	 a	 design	ex14_top.v,	 which	 produces	 a	 variable	
frequency	sinewave	using	table-lookup	method.		The	sampling	frequency	is	10kHz,	and	the	
sine	 value	 is	 read	 from	 the	 ROM	 that	 is	 preloaded	with	 one-cycle	 of	 a	 sinewave	 (i.e.	 the	
address	of	the	ROM	is	the	phase	and	the	content	is	the	sine	value).		On	every	sample	period,	
advance	 the	 address	 (i.e.	 the	 phase)	 by	 an	 amount	 determined	 by	 SW[9:0].	 	 Derive	 the	
relationship	between	the	output	signal	frequency	and	the	switch	setting.	

The	overall	block	diagram	is	shown	below.		The	switch	setting	is	multiplied	by	a	constant	k	to	
convert	the	phase	increment	SW[9:0]	to	frequency.		

You	 can	produce	a	10-bit	 x	 14-bit	 constant	 coefficient	multiplier	using	 the	 IP	 catalog	 tool.	
The	14-bit	constant	is	14’h2710	(which	is	14’d10000).		The	product	is	a	24-bit	number,	and	
the	 frequency	 is	 the	 top	 14-bits	 (Why?).	 	 The	 frequency	 can	 then	 be	 displayed	 on	 the	 7-
segment	displays.			

Produce	 a	 439Hz	 sinewave,	 which	 is	 close	 to	 440Hz,	 the	 frequency	 commonly	 found	 in	
tuning	 forks.	 	Make	sure	 that	 this	 is	 indeed	correct	 (through	 listening	or	measuring	with	a	
frequency	counter).	

	

	

7.	 Experiment	15	(Optional	Challenge):		Using	the	A-to-D	converter		

In	this	experiment,	you	will	learn	to	use	A-to-D	converter	MCP3002	on	the	add-on	board	to	
convert	 analogue	 voltages	 to	 digital	 signals.	 	 Again,	 download	 from	 the	 webpage	 the	
spi2adc.v	module,	which	is	already	written	for	you	to	use.	

Instead	 of	 using	 the	 slide	 switches	 to	 control	 the	 frequency,	 use	 the	 A-to-D	 converter	 to	
convert	 the	 dc	 voltage	 of	 the	 potentiometer	 (which	 is	 between	 0v	 and	 3.3v)	 and	 use	 this	
converter	value	instead.			

	

To	help	you	know	what	you	should	aim	for,	the	solutions	for	ex14sol.sof	and	ex15sol.sof	are	
available	to	download.			

	





Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment:	FPGA	Design	with	Verilog	(Part	4)		

PART	4	–	Real-time	Audio	Signal	Processing	

1.0	 Putting	everything	together	

In	this	part	of	the	experiment,	you	will	learn	to	combine	the	ADC	with	the	DAC	on	the	Add-
on	card,	and	use	the	DE1	to	perform	some	simple	audio	processing.		

The	 goal	 of	 the	 final	 week’s	 laboratory	 session	 is	 to	 implement	 a	 speech	 echo	 effect	
synthesizer.	 	 You	 need	 to	 bring	 your	 earphone	 to	 the	 lab	 in	 order	 to	 listen	 to	 the	 audio	
output.		

2.0	 Experiment	16:	An	audio	in-and-out	(all	pass)	loop	

Download	 from	 the	 Experiment	 webpage	 the	 file	 ex16_proto.zip,	 which	 contains	 the	
prototype	folder	for	this	experiment.	

• Examine	the	contents	within	this	folder.		You	should	find	the	following	Verilog	files:	
	

Module	 Function	
ex16_top.v	 Top-level	design;	interface	to	pins	
spi2dac.v	 SPI	interface	circuit	to	DAC	from	Part	3	
spi2adc.v	 SPI	interface	circuit	to	ADC	
pwm.v	 Pulse-width	modulation	DAC	from	Part	3	
clktick_16.v	 Clock	divider	to	generate	sampling	clock	ticks	at	10kHz	from	Part	2	
pulse_gen.v	 Generate	a	one-cycle	pulse	on	rising	edge	of	a	trigger	signal	
hex_to_7seg.v	 Hex	to	7-segment	decoder	from	Part	1		
allpass.v	 “processor”	module	–	this	performs	processing,	which	simply	passes	input	

to	output.	

• Study	ex16_top.v.	 	 This	 specifies	 a	 system	 as	 shown	 in	 the	
following	diagram	(the	part	inside	the	Cyclone	V).		Make	sure	
you	understand	how	this	works.	

• Note	how	the	spi2adc.v	module	is	used.	Explicitly	associating	
the	signal	names	INSIDE	the	module	(e.g.	sysclk)	to	OUTSIDE	
(e.g.	 CLOCK_50)	 allow	 connections	 to	 be	 defined	
independent	 of	 the	 order.	 	 This	 is	 a	more	 verbose	 but	 is	 a	
much	safer	way	to	make	connections	to	modules.		

• The	 ADC	 has	 two	 analogue	 input	 channels:	 CH0	 and	 CH1.	 They	 connected	 to	 the	
potentiometer	and	to	the	3.5mm	socket	respectively.		We	only	use	CH1	for	ex16.	

• Now	examine	the	module	allpass.v.		The	name	of	this	module	is	“processor”	and	is	
different	from	the	name	of	the	Verilog	file.		There	is	no	need	to	use	the	same	name	
except	that	normally	it	is	more	convenient	to	do	so.		However,	in	this	case,	we	have	
deliberately	used	the	filename	“allpass”	to	describe	its	function,	while	using	a	more	
universal	 name	 for	 the	module.	 	 You	 can	 choose	 “allpass.v”	 as	 the	 source	 of	 the	
module	 “processor”	 now.	 	 Later,	 you	 can	 have	 a	 different	Verilog	 file	 to	 define	 a	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 2	

different	 “processor”.	 	 Which	 version	 of	 “processor”	 you	 use	 in	 your	 design	 is	
specified	in	Project	>	Add/Remove	File	in	Project.		

	

• Make	 sure	 that	 you	 understand	 fully	 what	 the	 Verilog	 file	 “allpass.v”	 does.	 	 It	
actually	does	very	little.	It:	

1. Corrects	 the	 ADC	 converter	 data	 (which	 uses	 offset	 binary	 with	 0V	
represented	 by	 a	 value	 of	 ~385),	 but	 subtracting	 the	 offset	 from	
data_out[9:0]	to	obtain	a	2’s	complement	value	x[9:0].	

2. Connects	X	to	Y,	i.e.	does	nothing	and	hence	“allpass”.	
3. Converts	the	Y	value	from	2’s	complement	to	offset	binary	for	the	DAC.	The	

offset	now	is	at	512	as	shown	below.	

	
• Build	your	design	for	testing	on	the	DE1	Board.		

To	do	this,	you	should:	
1. Open	 each	 .v	 file,	 and	 use	 Processing	 >	

Analyze	 Current	 File	 on	 each	 of	 the	
Verilog	 file	 to	 ensure	 that	 there	 is	 not	
syntax	error.	

2. Use	Project	>	Add/Remove	File	in	Project	
to	 include	all	 the	 .v	 files	you	need.	 	Here	
we	 select	 allpass.v	 to	 supply	 the	
“processor”	 module.	 	 In	 the	 future,	 you	
could	 substitute	 allpass.v	 with	 another	
file	for	a	different	processor.	

3. While	ex16_top.v	is	the	current	file	in	the	
editor	window,	use	Project	>	Set	as	Top-
level	 Entity	 to	define	 top	 is	 the	 top-level	
module.	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 3	

4. Use	 Project	 >	 Start	 >	 Analysis	 and	 Synthesize	 …	 	 to	 check	 for	 errors	 and	
warnings	without	compiling	everything.	

5. Check	that	Device,	Pin	and	TimeQuest	clock	period	are	all	assigned	correctly.	
6. Compile	 the	whole	design	and	download	 the	bit-stream	 file	 “ex16_top.sof”	 to	

DE1.	
7. Test	 that	 it	 is	 working	 properly.	 You	 can	 use	 the	 PC	 to	 play	 some	 music	 or	

speech	files	(downloadable	from	Experiment	webpage),	and	use	an	earphone	to	
listen	to	the	DAC	output.	 	When	no	signal	 is	sent	to	the	DE1	board,	the	display	
should	show	a	hex	value	of	181	to	188.	

When	you	get	to	this	part,	the	experiment	framework	is	shown	to	be	working.	It	takes	audio	
samples	 at	 10kHz	 from	 the	 ADC,	 passes	 it	 through	 a	 processor	 module	 and	 output	 the	
processed	sample	to	the	DAC.		

		

Test	yourself		

Now	create	a	new	Verilog	file	mult4.v	which	is	a	processor	module	(i.e.	module	name	is	still	
“processor”),	that	amplifies	the	input	by	a	factor	of	four.	 	Test	that	this	 is	working	(i.e.	the	
signal	to	the	earphone	should	be	louder	or	distorted).		The	easiest	way	to	multiple	by	4	is	to	
perform	arithmetic	left	shift	by	2	bits.	

	

	

3.0	 Experiment	17:	Echo	Synthesizer	with	fixed	delay	

In	 this	part	of	 the	experiment,	you	will	design,	 implement	and	test	a	circuit	 that	simulates	
the	 effect	 of	 simple	 echo.	 	 The	diagram	below	 shows	 two	 components	 of	 a	 sound	 source	
reaching	its	listener:	the	direct	path	signal	x(t)	and	the	echo	signal	b	x(t-T)	which	is	a	weaker	
version	 of	 x(t)	 attenuated	 by	 a	 factor	 b,	 bounced	 off	 the	 floor.	 	 The	 echo	 signal	 is	 also	
delayed	by	T	relative	to	the	direct-path	signal	x(t).	

	
Such	simple	echo	can	be	 implemented	as	signal	 flow	graph	as	shown	below.	 	This	 involves	
three	 components:	 a	 delay	 block	 that	 delays	 x(t)	 by	 K	 sample	 periods;	 a	 gain	 block	which	
multiplies	the	delayed	signal	by	the	factor	b;	and	the	adder.			

	 	
The	delay	block	can	be	implemented	with	a	first-in-first-out	(FIFO)	buffer.		A	FIFO	
is	 found	 in	 all	 forms	 of	 digital	 systems.	 	 The	 rule	 is	 simple:	 received	 data	 are	
stored	 in	 sequence	 in	 such	 a	way	 that	 they	 can	 be	 retrieved	 in	 the	 order	 that	
they	arrive.	When	a	new	data	item	arrives	and	the	FIFO	is	not	full,	it	is	written	to	
the	FIFO.	 	As	a	 stored	data	 item	 is	 retrieved,	 it	 is	 removed	 from	 the	FIFO.	This	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 4	

allows	the	send	and	retrieve	rates	to	be	different	in	the	short	term.	If	the	send	rate	is	higher	
than	retrieve	rate,	eventually	the	buffer	will	get	full.	If	the	buffer	is	full,	it	should	not	receive	
any	more	data	 (otherwise	existing	 store	data	would	be	corrupted).	A	“full”	 status	 signal	 is	
asserted	to	tell	the	sender	not	send	any	more	data.	Similarly	if	the	buffer	is	empty,	it	cannot	
provide	any	data	for	retrieval.		An	“empty”	status	signal	is	used	to	indicate	that	the	FIFO	has	
no	more	data	to	provide.	

Create	a	new	project	using	the	files	from	Experiment	16	as	your	prototype.		With	IP	Catalog	
tool,	 generate	 a	 FIFO	 component	 of	 size	 8192	 x	 10-bit	 as	 shown	 here.	 	 You	 only	 need	 to	
provide	only	the	“full”	status	signal.	This	FIFO	is	used	to	store	the	most	recent	8192	samples,	
hence	providing	a	delay	of	0.8192msec	since	the	sampling	frequency	 is	10KHz.	 	Before	the	
echo	simulation	circuit	starts	to	provide	the	echo,	the	FIFO	must	first	be	completely	filled	(i.e.	
wait	until	the	“full”	signal	 is	asserted).	 	Thereafter,	the	writing	of	the	ADC	sample	and	DAC	
sample	 is	 synchronous,	 and	 the	 FIFO	 remains	 full.	 The	 read	 data	 is	 always	 the	write	 data	
delayed	by	8192	sample	period.	

The	attenuation	factor	b	should	be	½	or	¼,	which	can	easily	be	implemented	with	a	simply	
binary	shift.		

	

Deliverable	

Implement	 the	 simple	 echo	 simulator	 and	 test	 that	 it	 works.	 	 For	 the	 purpose	 of	 test,	
download	three	different	sound	files:	clapping.mp3,	hello.mp3	and	hitchhiker.mp3,	and	play	
them	on	the	PC	or	phone	 in	a	 loop.	 	Use	your	earphone	to	 listen	to	the	effect	of	the	echo	
synthesizer.	

	

4.0	 Experiment	18:	Multiple	echoes	 	

The	 design	 in	 Experiment	 17	 produces	 a	 single	 echo.	 	 The	 signal	 flow	 graph	 only	 has	
feedforward	paths.		Multiple	echoes	can	be	produce	with	a	slight	modification	of	the	signal	
flow	graph	to	the	one	shown	below.			

	
The	 delay	 block	 now	 stores	 the	 output	
sample	 y(t)	 instead	 of	 the	 input	 sample	
x(t).	 	 The	attenuated	and	delayed	y(t)	 is	
SUBTRACTED	 from	 x(t)	 to	 produce	 the	
next	 output.	 	 (Why	 must	 this	 be	 a	
subtract	and	not	an	add?)	

	

Provide	 a	 design	 to	 implement	 this	
architecture	and	test	it.	

	

	

	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 5	

5.0	 Experiment	19	(Optional	challenge):		Echo	Synthesizer	with	Variable	delay		

In	this	experiment,	you	will	design,	implement	and	test	a	system	with	variable	delay.		A	bit-
stream	 (echo.sof)	 that	 implements	 a	 solution	 can	 be	 downloaded	 from	 the	 Experiment	
webpage.		You	also	need	to	download	the	three	MP3	test	files.		Connect	the	audio	input	to	
the	 speaker	 of	 the	PC	 and	play	 the	 audio	 files	 in	 a	 loop.	 	 Program	DE1	with	 echo.sof	 and	
listen	to	 the	output	with	your	earphone.	Change	the	delay	of	 the	echo	with	SW[8:0].	 	The	
amount	of	delay	in	millisecond	is	displayed	on	the	7-segment	displays	as	a	decimal	number.	

The	design	of	this	experiment	is	shown	in	the	block	diagram	below.		It	consists	of	a	number	
of	modules:	

• RAM	Delay	Bock	 -	 In	place	of	 the	FIFO	 to	 implement	 the	delay	block,	 it	uses	a	2-port	
RAM	block	(8192	x	9-bit)	–	one	write	port	(to	store	the	ADC	samples)	and	one	read	port.		

• Address	Generator	-	A	13-bit	counter	is	used	to	generate	the	read	address	to	the	RAM.	
(Why	13-bits?)	The	counter	value	is	incremented	on	the	negative	edge	of	the	data_valid	
signal	 at	 a	 frequency	 of	 10KHz.	 	 In	 this	 way,	 the	 address	 generator	 computes	 the	
address	used	on	the	next	read	and	write	cycle.		The	write	address	is	generated	from	the	
read	address	by	adding	the	value	taken	from	SW[8:0].		Since	the	address	is	13-bits	wide,	
the	9-bit	delay	value	 is	 zero-padded	 in	 its	 lower	4	bits.	 Therefore,	 the	delay	between	
the	read	and	write	samples	is:	SW[8:0]	x	16	x	0.1	msec.	

• The	read	and	write	enable	signals	are	common,	and	it	is	generated	from	the	data_valid	
signal	with	the	pulse_gen	module.			

• The	 write	 data	 value	 y[9:1]	 is	 9-bit	 instead	 of	 10-bit	 wide.	 	 This	 is	 because	 the	
embedded	memory	 in	 the	Cyclone	 III	 FPGA	 is	 configurable	as	9-bit	 in	data	width,	but	
not	10-bit.	 	Therefore	the	output	data	value	is	truncated	to	9-bit	before	storing	in	the	
delay	block.	

• The	 read	 data	 value	 is	 of	 course	 also	 9-bit	 wide.	 	 Therefore	 the	 x0.5	 can	 easily	 be	
implemented	by	sign-extending	the	9-bit	value	to	10-bit:		{q[8],q[8:0]}.	

• The	implementation	of	the	feedback	loop	to	generate	the	echo	effect	is	identical	to	that	
from	the	previous	experiment.	

• To	 display	 the	 delay	 value	 in	milliseconds,	 the	 value	 of	 SW[8:0]	 is	 first	multiplied	 by	
1638	(why)	with	a	constant	multiplier.		This	gives	a	20-bit	product,	the	most	significant	
10-bits	of	which	is	the	delay	in	milliseconds.	(Why?)		This	is	then	converted	from	binary	
to	BCD	and	decoded	for	display	on	the	7-segment	displays.	

	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 6	

	
	

6.0	 Experiment	20:		Voice	Corruptor	(Not	part	of	this	Lab)	 	

This	part	of	the	experiment	is	outside	the	scope	of	the	experiment.		It	is	designed	to	provide	
you	 with	 an	 open	 problem	 so	 that	 you	 can	 explore	 designing	 digital	 systems	 and	
implementing	digital	 circuits	using	 the	DE1	and	 the	add-on	card	at	 your	own	 leisure.	 	 You	
need	to	check	out	a	set	of	kits	to	take	home	from	stores.		For	example,	you	might	want	to	
try	this	out	over	the	Christmas	break.	

You	 are	 now	 equipped	with	 all	 the	 tools	 and	 knowledge	 to	 design	 a	 reasonably	 complex	
audio	 processing	 system.	 	 The	 idea	 here	 is	 to	 design	 something	 that	 will	 take	 a	 human	
speech	signal	and	then	“corrupt”	 in	a	way	that	the	identity	of	the	speaker	 is	masked	while	
the	speech	remain	intelligible.		

One	way	 to	do	 this	 is	 to	 change	 the	pitch	of	 the	 speaker	 (e.g.	make	 it	 sounds	 like	Donald	
Duck).	 	 	 There	 are	many	ways	 to	 perform	 pitch	 change	 of	 speech.	 One	method,	which	 is	
linked	 to	 the	 previous	 experiments,	 is	 to	 employ	 a	 technique	 based	 on	 cross	 fading	 (i.e.	
combining)	 of	 two	 separately	 delayed	 version	 of	 the	 speech	 signal.	 	 The	 technique	 is	
depicted	in	the	block	diagram	below.			

	
The	 sound	 source	 is	 delayed	 through	 two	 separate	 blocks,	 providing	 KA	 and	 KB	 sample	
delays,	which	vary	with	time.	 	The	delayed	signals	are	then	attenuated	by	GA	and	GB,	and	
combined	 with	 the	 adder.	 	 In	 order	 to	 minimize	 the	 artifacts	 and	 discontinuities	 in	 the	
output	signal	and	to	maintain	a	constant	volume,	the	gain	values	GA	and	GB	are	designed	to	
cross	fade	with	each	other	–	i.e.	when	one	is	ramping	up	(from	0	to	1),	the	other	is	ramping	
down.		A	plot	of	the	four	parameters,	KA,	KB,	GA	and	GB,	vs	time	is	shown	below.	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 7	

	
There	are	four	regions.			

1. Region	A	(t1	to	t2)	-	Only	channel	A	is	contributing	to	the	output.		The	delay	KA	
is	 gradually	 decreasing	 linearly	 from	 25.5ms	 to	 12.7ms	 (255	 to	 127	 x	 100µs).		
The	gain	GA	is	constant	at	1.	

2. Region	AB	(t2	to	t3)	–	Both	channels	contribute	to	the	output	with	A	decreasing	
and	 B	 increasing	 their	 respective	 contributions.	 	 The	 two	 channels	 are	 cross	
faded	before	GA	drops	from	1	to	0	while	GB	increases	in	the	other	direction.	

3. Region	 B	 (t3	 to	 t4)	 –	 This	 is	 similar	 to	 Region	 A,	 but	 the	 behavior	 applies	 to	
channel	B	instead	of	channel	A.	

4. Regions	BA	(t4	to	t5)	–	Similar	to	Region	AB,	but	the	two	channels	are	reversed.	

The	pattern	 repeats	 itself	 indefinitely.	 	Note	 that	 the	“don’t	 care”	portion	of	KA	and	KB	 is	
due	to	the	fact	that	during	this	period,	the	gain	GA	or	GB	is	zero.	

	

Hints:	

• Initially,	 try	 the	 delay	 ramping	 gradient	 of	 0.5,	 i.e.	 the	 delay	 is	 dropped	by	 k	 over	
time	2*k.	

• You	can	use	a	9-bit	down	counter	to	define	both	the	delay	KA	and	the	four	regions.	
• You	can	derive	all	other	values:	KB,	GA	and	GB,	from	the	counter	values.	
• You	 can	 design	 a	 four	 state	 synchronous	 state	 machine	 to	 control	 the	 corruptor	

circuit.	
• Instead	 of	 delay	 varying	 ramping	 high	 to	 0,	 you	 can	 reverse	 the	 direction	 of	 the	

ramping.		Alternative	you	can	design	the	delay	to	vary	up	and	then	down.	
• In	addition	to	pitch	changes,	you	may	explore	other	audio	effects.	





	
  



	
  




